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Abstract. Two-to-one parametric resonance in transverse vibration of an axially accelerating viscoelastic string
with geometric nonlinearity is investigated. The transport speed is assumed to be a constant mean speed with small
harmonic variations. The nonlinear partial differential equation that governs transverse vibration of the string is
derived from Newton’s second law. The method of multiple scales is applied directly to the equation, and the
solvability condition of eliminating secular terms is established. Closed-form solutions for the amplitude of the
vibration and the existence conditions of nontrivial steady-state response in two-to-one parametric resonance are
obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency
of speed variation are presented. Lyapunov’s linearized stability theory is employed to analyze the stability of the
trivial and nontrivial solutions for two-to-one parametric resonance. Some numerical examples highlighting the
effects of the related parameters on the stability conditions are presented.
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1. Introduction

Many engineering devices involve transverse vibrations of axially moving strings. Serpentine
belts, fiber windings, magnetic tapes and thread lines all belong to this class. One important
problem is the occurrence of large transverse vibrations in such systems. Much research has
been done on the aspect, which has been reviewed in [1–4]. To model dissipative mechanisms,
viscoelasticity of string material is recently taken into consideration. Fung et al. [5] developed
a numerical method based on Galerkin’s method and finite difference integration for transient
response of a moving viscoelastic string that is integrally constituted by the Boltzmann su-
perposition principle. Zhang and Zu applied the method of multiple scales directly to the
partial-differential equation that governs the transverse vibration of a moving viscoelastic
string, and obtained the nonlinear natural frequencies and the amplitude of the free vibration
[6] and the amplitude of near- and exact-resonant steady-state response of the forced vibra-
tion [7]. They also obtained closed-form solutions for the amplitude of the vibration and the
existence conditions of the nontrivial steady-state response of summation resonance of para-
metrically excited moving viscoelastic strings [8], and investigated the stability of the trivial
and nontrivial responses based on the Lyapunov linearized stability theory [9]. In their work,
a linear differential viscoelastic constitutive law, the Kelvin viscoelastic model, is chosen to
describe the viscoelastic property of the string material. Chen, Zu and Wu [10] applied the
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method of multiple scales to study analytically parametric vibration of the axially moving vis-
coelastic string constituted by the Boltzmann superposition principle. For transverse vibration
of a moving viscoelastic string constituted by the general linear differential relation, Zhao
and Chen treated the stress as a new variable in the finite-difference scheme, and proposed
a numerical algorithm by discreting the partial-differential equation into a large differential-
algebraic equation system [11]. However, all the above-mentioned analytical studies [6–10]
addressed the constant axial-transport-speed problem. In fact, many real systems can be better
represented by the model that the axial transport speed is a constant mean velocity with small
periodic fluctuations. The speed fluctuations also lead to tension fluctuations, since the tension
is velocity-dependent. Hence the investigation of an axially accelerating string is closely
related to comprehensive studies of a constant-speed string with tension fluctuations [8–
13]. Although the equation of transverse vibration for an axially accelerating string was first
derived by Miranker in 1960 [14], detailed research has not been conducted until recently. Pak-
demirili and Batan [15] used the Galerkin method and Floquet theory to treat numerically the
dynamic stability of a constantly accelerating string. Pakdemirili et al. [16] further considered
the dynamic stability of a moving string that the time-dependent axial velocity is sinusoidal.
In the case for which the time-dependent axial velocity varies harmonically about a constant
mean velocity, Pakdemirli and Ulsoy [17] applied the discretization-perturbation method and
the direct-perturbation method to analyze the stability of an axially accelerating string. For the
arbitrary time-dependent axial velocity, Ozkaya and Pakdemirli [18] used Lie-group theory to
find exact solutions. However, almost all previous research on the transverse vibration of an
axially accelerating string is confined to linear models. The literature that is specially related to
nonlinear vibrations of axially accelerating strings is very limited. Wu and Chen [19] studied
steady-state responses of an axially accelerating elastic string with geometric nonlinearity, but
they did not consider the damping effect resulted from the viscoelasticity of the string. To
address the lack of research in this aspect, the authors investigated transverse vibration of an
axially accelerating viscoelastic string with geometric nonlinearity.

In this paper, the partial-differential equation that governs nonlinear vibrations of an axially
accelerating string is established. The method of multiple scales is applied directly to the
equation to analyze two-to-one parametric resonance. Solvability conditions, which lead to the
differential equations satisfied by the amplitudes and phase angles of the dynamic response,
are derived. Closed-form solutions for the amplitude of nontrivial response of two-to-one
parametric resonance and the corresponding existence conditions are obtained. Numerical
results of steady-state responses and existence boundaries are presented. The Lyapunov lin-
earized stability theory is employed to obtain instability condition of the trivial solution and
the stability of the first or second nontrivial solution. Numerical examples show the effects
of the mean transport speed, the amplitude and the frequency of speed variation on these
conditions.

2. Equation of transverse vibration

Consider a uniform, flexible, axially moving viscoelastic string of density ρ, cross-sectional
area A, initial tension P , and uniform transport speed v that travels between two fixed eyelets
separated by distance l. The speed v is not constant, but a prescribed function of time t . Several
simplifying assumptions are made as follows: (1) only transverse motion in the y-direction is
taken into consideration; (2) Lagrangian strain is employed as a finite measure of the strain of
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the string; (3) the viscoelastic string is in a state of uniform initial stress, and the initial tension
is rather large; (4) only geometric nonlinearity due to finite stretching is considered through
Lagrangian strain.

Based on the above assumptions, the equation of motion in the transverse direction can be
derived from Newton’s second law [5,11]

ρA
D2U

Dt2
= P

∂2U

∂x2
+ ∂

∂x

(
Aσ (x, t)

∂U (x, t)

∂x

)
, (1)

where U(x, t) is the displacement in the transverse direction, x is the spatial Cartesian co-
ordinate in the axial direction and σ (x, t) is the perturbed stress.

For axially accelerating strings, the transverse acceleration is compounded by the relative
acceleration, the Coriolis acceleration, and the convected acceleration [13]

D2U

Dt2
= ∂2U

∂t2
+ 2v

∂2U

∂x∂t
+ dv

dt

∂U

∂x
+ v2 ∂2U

∂x2
. (2)

The Kelvin viscoelastic model is chosen to describe the viscoelastic property of the string
material. Thus the stress-strain relation is

σ (x, t) = E0εL (x, t ) + η
∂εL (x, t)

∂t
, (3)

where σ (x, t) is the perturbed stress in the axial direction, εL(x, t) is the perturbed Lagrangian
strain component, E0 is the stiffness constant of the string, and η is the dynamic viscosity. For
strings with finite amplitude, the perturbed Lagrangian strain component in the axial direction
related to the transverse displacement is given by

εL (x, t) = 1

2

(
∂U

∂x

)2

. (4)

It is assumed that the transport speed is characterized as a small simple harmonic variation
about the constant mean speed, i.e.

v (t) = c0 + c1 cos �t (c0, c1 > 0) . (5)

Substituting Equations (2)–(5) in Equation (1) and transforming the resulting equation into
dimensionless form yields

∂2u

∂τ 2 + 2 (γ + γ1 cos ωτ) ∂2u
∂ξ∂τ

+
(
γ 2 + γ 2

1
2 + 2γ γ1 cos ωτ + γ 2

1
2 cos 2ωτ − 1

)
∂2u

∂ξ2

−ωγ1 sin ωτ ∂u
∂ξ

= ∂
∂ξ

(
ες (ξ, τ)

∂u(ξ,τ )

∂ξ

)
,

(6)

where

ς (ξ, τ) = Ee

2

(
∂v (ξ, τ )

∂ξ

)2

+ Ev

2

∂

∂τ

(
∂v (ξ, τ )

∂ξ

)2

, (7)

u = U
l

, ξ = x
l

, τ = t
l

√
P
ρA

, ω = �l

√
ρA

P
, Ee = E0A

P
,

Ev = ηb

l

√
P
ρA

, γ = c0

√
ρA

P
, γ1 = c1

√
ρA

P
, ες (ξ, τ ) = Aσ(x,t)

P
,

(8)
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In Equation (6), a small dimensionless parameter ε is employed as a bookkeeping device,
which implies that the disturbed internal force Aσ (x, t) is much smaller than the initial
tension. Equation (6) is the governing equation of transverse motion in dimensionless form.
The corresponding non-vibration boundary conditions are

u (0, t) = 0, u (1, t) = 0. (9)

3. Application of the method of multiple scales

Introduce the mass, gyroscopic, and linear stiffness operators as follows

M = I , G = 2γ
∂

∂ξ
, K = (

γ 2 − 1
) ∂2

∂ξ 2
(10)

where the operators M and K are symmetric and positive definite for subcritical transport
speed, G is skew-symmetric and represents a convective Coriolis acceleration component.
Since the variation of the transport speed is small, one may let c1/c0=γ 1/γ = εδ. Then sub-
stituting Equations (7) and (10) in Equation (6), one obtains a continuous gyroscopic system
with some small nonlinear terms and some small-parameter excitation terms, namely

M
∂2u

∂τ 2
+ G

∂u

∂τ
+ Ku = ε

[
3

2
Ee

(
∂u

∂ξ

)2
∂2u

∂ξ 2
+ 2Ev

∂u

∂ξ

∂2u

∂ξ∂τ

∂2u

∂ξ 2

+ Ev

(
∂u

∂ξ

)2
∂3u

∂ξ 2∂τ
− δγ 2

2
(δε + 4 cos ωτ + δε cos 2ωτ)

∂2u

∂ξ 2

− 2δγ cos ωτ
∂2u

∂τ∂ξ
+ ωδγ sin ωτ

∂u

∂ξ

]
.

(11)

The method of multiple scales will be directly employed to solve Equation (11). A first-order
uniform approximation is sought in the form

u (ξ, τ, ε) = u0 (ξ, T0, T1) + εu1 (ξ, T0, T1) + O
(
ε2) (12)

where T0=τ is a fast scale characterizing motions occurring at ω or ωm (one of the nat-
ural frequencies of the corresponding unperturbed linear continuous gyroscopic system), and
T1=ετ is a slow scale characterizing the modulation of the amplitudes and phases due to the
nonlinearity and possible resonance. Substituting Equation (12) in Equation (11), using the
chain rule of time derivatives, and equating coefficients of like powers of ε, one has

M
∂2u0

∂T 2
0

+ G
∂u0

∂T0
+ Ku0 = 0 , (13)

M
∂2u1

∂T 2
0

+ G
∂u1

∂T0
+ Ku1 = −2M

∂2u0

∂T0∂T1
− G

∂u0

∂T1
+ 3

2
Ee

(
∂u0

∂ξ

)2
∂2u0

∂ξ 2

+ 2Ev

∂u0

∂ξ

∂2u0

∂ξ∂τ

∂2u0

∂ξ 2
+ Ev

(
∂u0

∂ξ

)2
∂3u0

∂ξ 2∂τ
− 2δγ cos ωT0

∂2u0

∂T0∂ξ

− 2δγ 2 cos ωT0
∂2u0

∂ξ 2
+ ωδγ sin ωT0

∂u0

∂ξ
,

(14)
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at leading and first order of ε, respectively.
Under the boundary condition (9), Wickert and Mote [20] gave the solution to Equa-

tion (13) as

u0 (ξ, T0, T1) =
∑

m=0,±1,···

[
φm(ξ)Am(T1)e

iωmT0 + φ̄k(ξ)Ām(T1)e
−iωmT0

]
, (15)

where the overbar denotes complex conjugation, and the mth natural frequency and the mth
normalized complex eigenfunction of the displacement field are, respectively, given by

ωm = mπ
(
1 − γ 2

)
, φm (ξ) = √

2 sin (mπξ) eimπγ ξ , (16)

which satisfy the orthonormality relations

〈φm,Mφm〉 = 1 , 〈φm,Gφm〉 = 2imπγ 2. (17)

Here the inner product is the same as that defined in [20], namely

〈
φi, φj

〉 =
∫ 1

0
φ̄i (ξ )φj (ξ)dξ. (18)

If the variation frequency ω approaches twice any natural frequency of Equation (14), two-
to-one parametric resonance may occur. A detuning parameter µ is introduced to quantify the
deviation of ω from 2ωm, and ω is described by

ω = 2ωm + εµ. (19)

To investigate the two-to-one parametric response, Equation (15) can be expressed as

u0 (ξ, T0, T1) = φm(ξ)Am(T1)e
iωmT0 + cc, (20)

where cc represents complex conjugate of all preceding terms on the right-hand of an equation.
Substituting Equations (19) and (20) in Equation (14) yields

M ∂2u1
∂T 2

0
+ G∂u1

∂T0
+ Ku1 = {−2iωmA′

mMφm − A′
mGφm + M2m (3Ee + 2iωmEv)Am |Am|2

+ {[
(1 + i) ωm + µ

2

]
φ̄′

m − γ φ̄′′
m

}
δγ Āmeiµt1

}
eiωmT0 + NST + cc ,

(21)

where NST denotes the terms that will not bring secular terms into the solution, and

M2m = 1

2

(
∂φm

∂ξ

)2
∂2φ̄m

∂ξ 2
+ ∂φm

∂ξ

∂φ̄m

∂ξ

∂2φm

∂ξ 2
. (22)

Equation (21) has a bounded solution only if a solvability condition is satisfied. The solvability
condition demands that the right side of Equation (21) be orthogonal to every solution of the
homogeneous problem. In order to avoid the unbounded solution, the solvability conditions
can be described as following

−2iωmA′
m 〈Mφm, φm〉 − A′

m 〈Gφm, φm〉 + Am |Am|2 (3Ee + 2iωmEv) 〈M2m, φm〉
+ {[

(1 + i) ωm + µ

2

] 〈
φ̄′

m, φm

〉 − γ
〈
φ̄′′

m, φm

〉}
δγ Āmeiµt1 = 0

(23)
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Using the natural frequencies and the eigenfunctions given by Equation (15), one calculates
the inner product in Equation (23), and obtains

〈M2m, φm〉 = −1

4
π4m4

(
3 + 2γ 2 + 3γ 4

)
,

〈
φ̄′

m, φm

〉 = 0 ,

〈
φ′′

m, φm

〉 = −m2π2
(
1 + γ 2

)
,

〈
φ̄′′

m, φm

〉 = − imπ

2γ

(
1 − e−2iγmπ

)
.

(24)

Substituting Equations (16) and (24) in Equation (23) results in the solvability condition

A′
m − i

8
π3m3

(
3 + 2γ 2 + 3γ 4

) [
3Ee + 2im

(
1 − γ 2

)
Ev

]
Am |Am|2

−δγ

2
sin (γ mπ)

[
sin (γ mπ) + i cos (γ mπ)

]
Āmeiµt1 = 0 .

(25)

Obviously, Equation (25) has a trivial solution Am = 0. Expressing the nontrivial solution Am

in polar form gives

Am = αmeiβm (26)

where αm and βm represent respectively the amplitude and the phase angle of the response.
Substituting Equation (26) in Equation (25) and separating the resulting equation into real and
imaginary parts, one obtains

α′
m = −1

4
π3m4 (

3 + 2γ 2 + 3γ 4) (
1 − γ 2)Evα

3
m

+ δγ αm

4

[
cos θm − cos (2γ mπ − θm)

]
, (27)

θ ′
m = µ − 3

8
π3m3 (

3 + 2γ 2 + 3γ 4) Eeα
2
m − δγ

4

[
sin θm + sin (2γ mπ − θm)

]
, (28)

where

θm = µT1 − 2βm. (29)

4. The amplitude the vibration and the existence conditions of steady-state responses

For the steady-state response, the amplitude αm and the new phase angle θm in Equations (27)
and (28) are constant. Setting α′

m = 0 and θ ′
m = 0in Equations (27) and (28) respectively, and

then eliminating θm from resulting equations lead to

π6

16
m6 (

3 + 2γ 2 + 3γ 4)2
[
4m2 (

1 − γ 2)2
E2

v + 9E2
e

]
α4

m

− 3

2
π3

(
3 + 2γ 2 + 3γ 4

)
µEem

3α2
m + µ2 − δ2γ 2 sin2 (γ mπ) = 0 .

(30)

It is obvious that Equation (27) possesses a singular point at the origin (trivial zero solution).
In addition, there may exist a nontrivial periodic solution with amplitudes, which is defined
by Equation (30), namely

α2
m =

3µEe ±
√

δ2γ 2
[
4m2

(
1 − γ 2

)2
E2

v + 9E2
e

]
sin2 (γ mπ) − 4m2

(
1 − γ 2

)2
E2

vµ
2

1
4π3m3

(
3 + 2γ 2 + 3γ 4

) [
4m2

(
1 − γ 2

)2
E2

v + 9E2
e

] . (31)
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Figure 1. The response amplitude vs. δ and µ for fixed γ = 0·3. (a) The first nontrivial solution. (b) The second
nontrivial solution.

Equation (31) represents the amplitudes of the steady-state response of the two-to-one para-
metric resonance.

From equation (31), it can be concluded that the nontrivial steady-state solutions exist only
when the following conditions are held,

3µEe ±
√

δ2γ 2
[
4m2

(
1 − γ 2

)2
E2

v + 9E2
e

]
sin2 (γ mπ) − 4m2

(
1 − γ 2

)2
E2

vµ
2 > 0

δ2γ 2
[
4m2

(
1 − γ 2

)2
E2

v + 9E2
e

]
sin2 (γ mπ) − 4m2

(
1 − γ 2

)2
E2

vµ
2 ≥ 0 .

(32)

For a viscoelastic string, EV �=0. From Equation (32), the existence condition of nontrivial
steady-state solutions can be expressed as

∓δγ |sin (γ mπ)| < µ ≤ δγ |sin (γ mπ)|
√

1 + 9E2
e

4m2
(
1 − γ 2

)2
E2

v

. (33)

Using Equation (31), one can determine the effects of the mean transport speed, the amplitude
and the frequency of the speed variation on the amplitudes of the steady-state response. In all
the following numerical examples, the authors set m = 1, Ee = 400 and Ev = 10.

The amplitudes of steady-state responses and existence boundaries vs. the nondimensional
amplitude of speed variation δ and the detuning parameter µ at the fixed nondimensional mean
transport speed γ = 0·3 or γ = 0·9 respectively are shown in Figures 1 and 2. The response
amplitude increases with the growth of δ and µ. The nondimensional mean transport speed
significantly influences the existence boundaries.

The amplitudes of steady-state responses and existence boundaries vs. the nondimensional
the mean transport speed γ and the detuning parameter µ at the fixed nondimensional amp-
litude of speed variation δ = 0·1 is shown in Figure 3. Mean translation speeds influence not
only the amplitude of the nontrivial steady-state response but also their existence region. The
response amplitude increases with the growth of µ. The nondimensional amplitude of speed
variation significantly influences the existence boundaries.

In all above cases, it is evident that µ has a significant effect on the amplitude and the
boundary of existence of the steady-state response. At exact two-to-one parametric resonance
(µ = 0), from Equation (33), only the first nontrivial solution exists. The amplitude of steady-
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Figure 2. The response amplitude vs. δ and µ for fixed γ = 0·9. (a) The first nontrivial solution. (b) The second
nontrivial solution.

state response and existence boundary vs. the nondimensional amplitude of speed variation δ

and the nondimensional the mean transport speed γ is illustrated in Figure 4.

5. Stability of trivial and nontrivial solutions

The stability of the trivial solution is treated first. Taking out the nonlinear terms from equation
(25), one obtains

A′
m − δγ

2
sin (γ mπ)

[
sin (γ mπ) + i cos (γ mπ)

]
ĀmeiµT1 = 0 . (34)

Suppose that the perturbed solutions of Equation (34) take the form

Am = (ar + iai) eβT1+ iµT1
2 , (35)

where ar and ai are real functions. Substituting Equation (35) in Equation (34), and separating
the real and imaginary parts from the resulting equations, one has[

2β − δγ sin2 (γ mπ)
]
ar − [

µ + δγ sin (γ mπ) cos (γ mπ)
]
ai = 0 ,[

µ − δγ

2 δγ sin (γ mπ) cos (γ mπ)
]
ar + [

2β + δγ sin2 (γ mπ)
]
ai = 0 .

(36)

A disturbed trivial solution should be nontrivial. Hence the determinant of the coefficient
matrix in equation (36) must vanish, i.e.,

4β2 − δ2γ 2 sin2 (γ mπ) + µ2 = 0 . (37)

β has a positive real component if

δ2γ 2 sin2 (γ mπ) − µ2 > 0 . (38)

Hence the trivial solution of Equation (34) is unstable under this condition. The Lyapunov lin-
earized stability theory indicates that the instability of a nonlinear system coincides with that
of the corresponding linear system. Therefore the trivial solution of the two-to-one parametric
resonance is unstable if

−δγ |sin (γ mπ)| < µ < δγ |sin (γ mπ)| . (39)
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Figure 3. The response amplitude vs. γ and µ for fixed δ = 0·1. (a) The first nontrivial solution. (b) The second
nontrivial solution.

The instability regions of the trivial solution of the two-to-one parametric resonance are
respectively regions 1 in Figure 5(a) for m = 1 and regions 1 and 2 in Figure 5(b) for m = 2.

Then the stability of the nontrivial solutions is treated. Linearizing Equations (27) and (28),
one obtains the linear equation(

α′
m

θ ′
m

)
= A

(
αm

θm

)
, (40)

where the matrix A, the Jacobian calculated at the fixed points (αm, θm), is given by

A = −π3

2

(
3 + 2γ 2 + 3γ 4

)

 m4Ev

(
1 − γ 2

)
α2

m αm

(
µ

π3
(
3 + 2γ 2 + 3γ 4

) − 3

4
Eem

3α2
m

)

3m3Eeαm m4Ev

(
1 − γ 2

)
α2

m


 . (41)

According to the Lyapunov linearized stability theory, the stability of the nontrivial solutions
is decided by the nature of the eigenvalues of the matrix A. If the eigenvalues have negative
real parts, the steady-state solutions are stable. On the other hand, if the real part of at least
one of the eigenvalues is positive, then the steady-state solution is unstable. The characteristic
equation of the matrix A is

λ2 + a1λ + a2 = 0 , (42)

where

a1 = π3m4Ev

(
1 − γ 2

) (
3 + 2γ 2 + 3γ 4

)
α2

m

a2 = π3

4 m3
(
3 + 2γ 2 + 3γ 4

) {
π3

4 m3
(
3 + 2γ 2 + 3γ 4

) [
4m2

(
1 − γ 2

)2
E2

v + 9E2
e

]
α2

m

− 3Eeµ} α2
m.

(43)

By the use of the Routh-Hurwitz criterion, the stability conditions can be determined as

a1 > 0, (44)
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a2 > 0. (45)

For subcritical transport speed, the inequality (44) holds. Substitution of Equations (31) and
(43) in inequality (45) and performing complicated manipulations result in

−δγ |sin (γ mπ)|
√

1 + 9E2
e

4m2
(
1 − γ 2

)2
E2

v

< µ ≤ −δγ |sin (γ mπ)| (46)

or

δγ |sin (γ mπ)| < µ ≤ δγ |sin (γ mπ)|
√

1 + 9E2
e

4m2
(
1 − γ 2

)2
E2

v

(47)

for the first nontrivial solution, and

−δγ |sin (γ mπ)| < µ < δγ |sin (γ mπ)| (48)

or

µ < −2mK2 (γ, δ) − δγ |sin (γ mπ)|
√

1 + 9E2
e

4m2
(
1 − γ 2

)2
E2

v

(49)

or

µ > δγ |sin (γ mπ)|
√

1 + 9E2
e

4m2
(
1 − γ 2

)2
E2

v

(50)

for the second nontrivial solution. Combining with the existence condition given by the in-
equalities (33), one obtains that

−2mK2 (γ, δ) + δγ |sin (γ mπ)| < µ < −2mK2 (γ, δ) + δγ |sin (γ mπ)|√
1 + 9E2

e

4m2
(
1 − γ 2

)2
E2

v

(51)

are the sufficient conditions that the first nontrivial solution is stable, and the inequalities
(48) are the sufficient conditions that the second nontrivial solution is stable. Inequalities
(39) and (48) indicate that the stability condition of the second nontrivial solution coincides
with the instability condition of the trivial solution. Inequalities (51) and (48) imply that the
lower boundary of the stability region of the first nontrivial solution coincides with the upper
boundary of the stability region of the second nontrivial solution. Choose Ee = 400 and Ev =
10. The stability regions of the first nontrivial solution of the two-to-one parametric resonance
are plotted in Figures 6(a) and (b) as region 1 and region 2 for m = 1, 2, respectively.

6. Conclusions

The nonlinear transverse vibrations of the axially accelerating string have been investigated.
The nonlinear partial-differential equation (6) that governs the transverse motion of the string
was established based on the Newton law. The method of multiple scales has been applied
directly to the partial-differential equation. Closed-form solutions (31) for the amplitude of
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Figure 4. The first nontrivial solution at exact two-to-one parametric resonance vs. γ and δ.

Figure 5. The instability region of the trivial solution. (a) m = 1. (b) m = 2.

Figure 6. The stability region of the first nontrivial solution. (a) m = 1. (b) m = 2.
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nontrivial response of the two-to-one parametric resonance and the corresponding existence
conditions (33) are derived from the solvability conditions (25) that results in a set of dif-
ferential equations (27) and (28) determining the amplitudes and the phase angles of the
dynamic response. Effects of related parameters on the steady-state responses and their ex-
istence boundaries for the two-to-one parametric resonance are numerically demonstrated. By
use of the Lyapunov linearized stability theory and the Routh-Hurwitz criterion, the instability
conditions (39) of the trivial solution, the stability condition (41) of the first nontrivial solution
and the stability condition (48) of the second nontrivial solution are presented. Effects of
related parameters on these conditions have been demonstrated numerically.
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